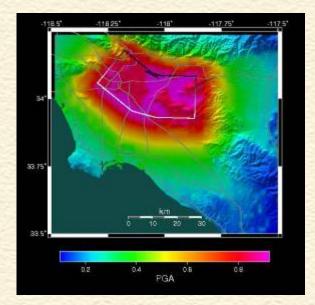
Critical facilities and earthquakes: managing risk of operational failure

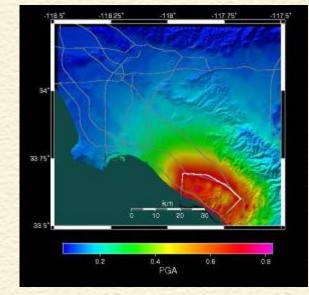
ERA/CUBE Partners Meeting Friday, May 11, 2007

Keith Porter Swaminathan Krishnan Xin Xu Caltech Civil Engineering Department

Critical facilities

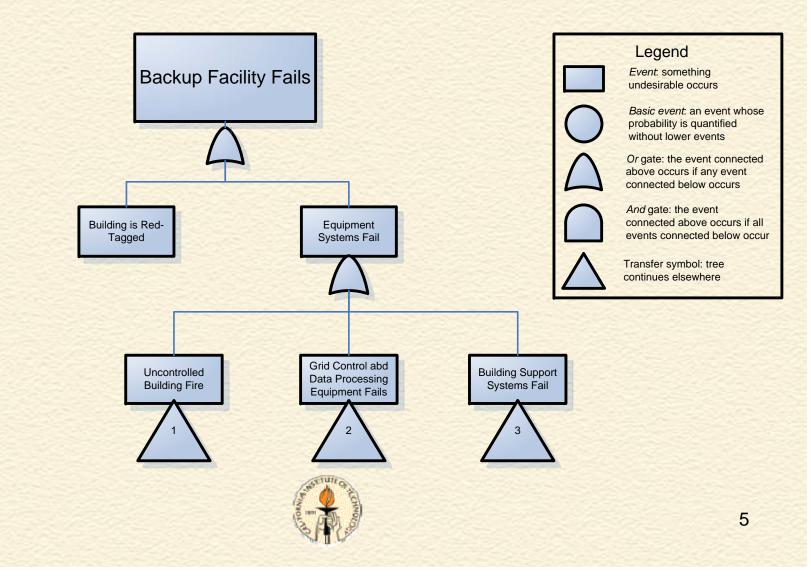
- Failure causes loss disproportionate to damage
 - Hospitals, data centers, operational centers...
- Failure results from red tag or equipment failure
- Mitigation measures
 - Strengthening: reduce p, site failure probability
 - Backup facility: reduce P, operational failure prob
- Backup facility
 - Cold to hot; normal operations can take place there
 - Located far enough from primary to avoid common-cause failure
 - Not too far to allow personnel exchange
- This presentation: is P low enough?

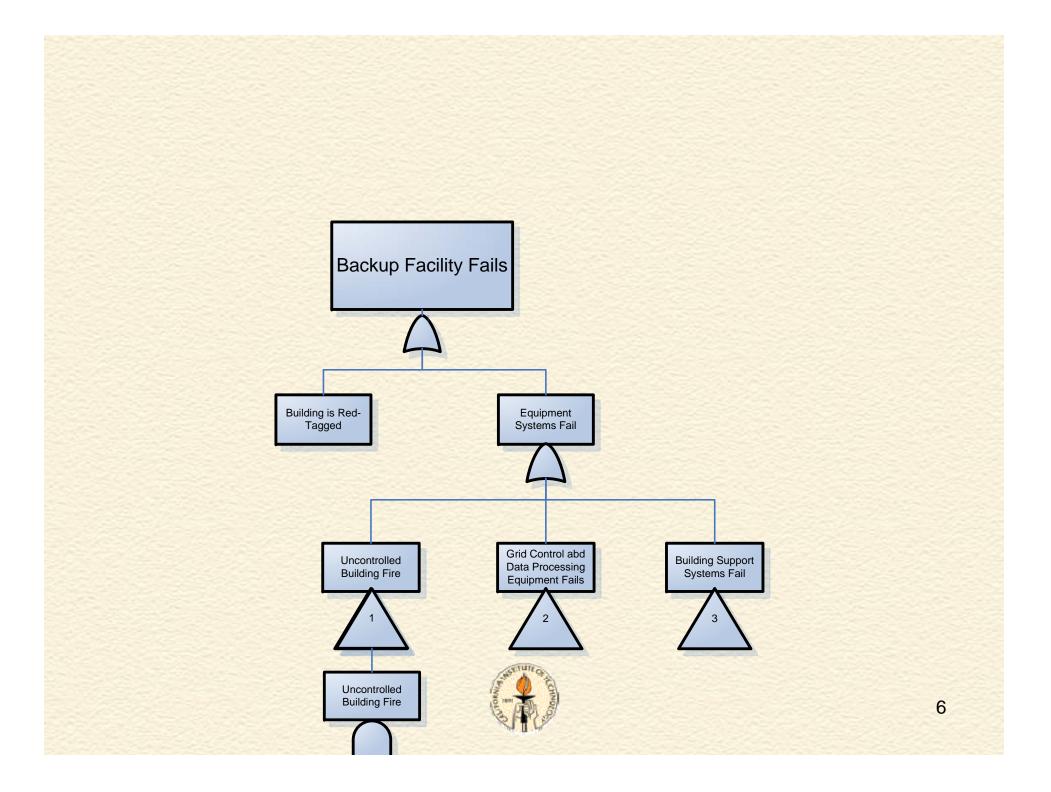

Decision-making information

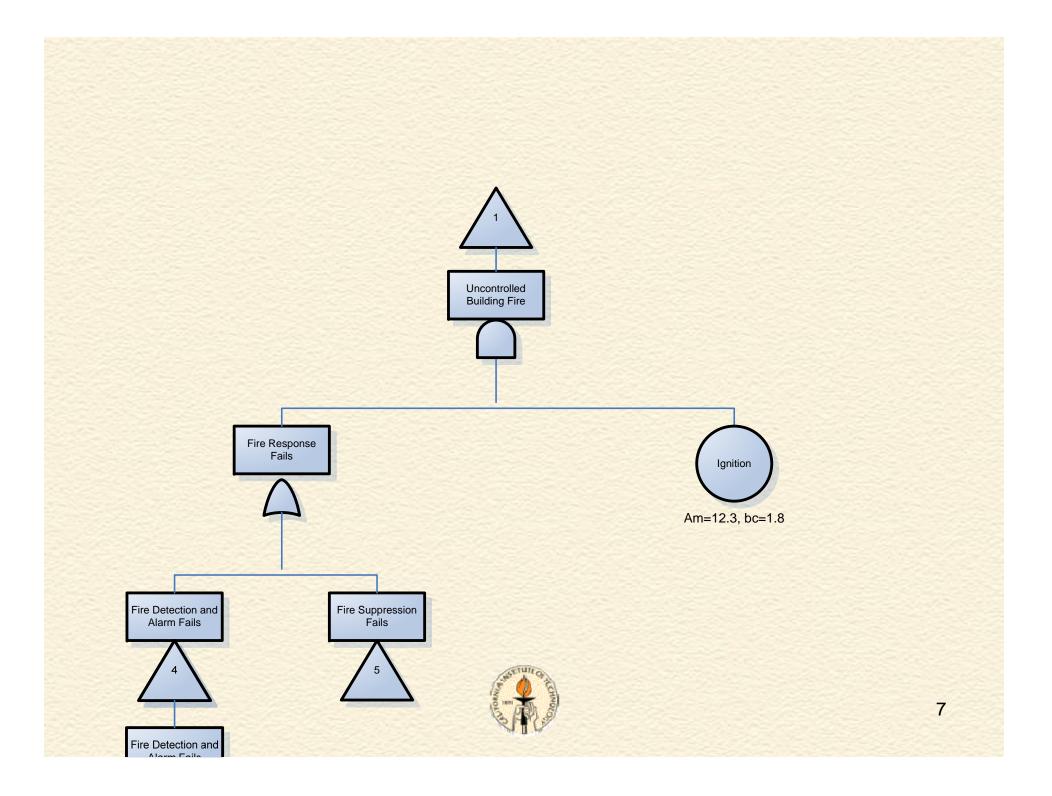

- Let's calculate *P*(*t*): prob. simultaneous operational failure at 2 sites in time *t*
- Question: is P(t) "low enough?"
 Yes! Bonuses for everyone!
 No, but can be made so by strengthening, or
 No; have to relocate the backup
- P(t) depends on
 - Hazard: how strongly and frequently both sites shake
 - Fragility: failure prob. each site as function of shaking

How do we calculate hazard?

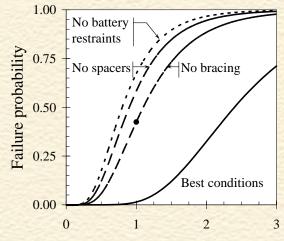
Hypothesize earthquake ruptures, estimate their annual frequency, and calculate probabilistic shaking at each site




etc.


shaking in quake 2 at site 1 shaking in quake 2 at site 2 frequency of quake 2

shaking in quake 1 at site 1 shaking in quake 1 at site 2 frequency of quake 1


How do we calculate fragility?

Basic events failure probabilities

Base acceleration, units of gravity

All the math you'll see here

- Start with basic events and "and" and "or" gates p_{A and B} = p_A x p_B p_{C or D} = 1 - (1 - p_C)x(1 - p_D)
 Repeat until reach the top event p₁ = combine *and* and *or* math, calculate vs intensity p₂ = similar combination for site 2
- Now calc P(t), prob. simultaneous operational failure at 2 sites in time t

 $L = \sum_{n} [f(\text{quake } n) \times p_1(\text{quake } n) \times p_2(\text{quake } n)])$ $P(t) = 1 - \exp(L \times t)$

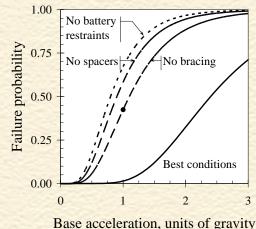
Implementation

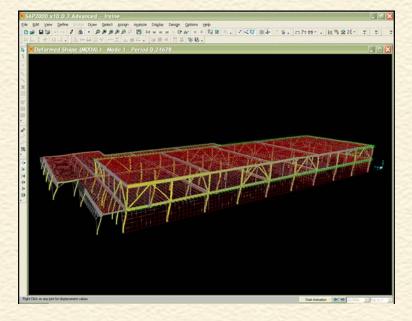
- A SoCal utility
 - Ops center
 - Data center
 - Backup 1 hr away
- Puente Hills thrust fault was a concern
 - Quick qualitative check: one event could strongly shake all 3 facilities
 - So management needed quantitative risk: what was P(t = 5 yr)?

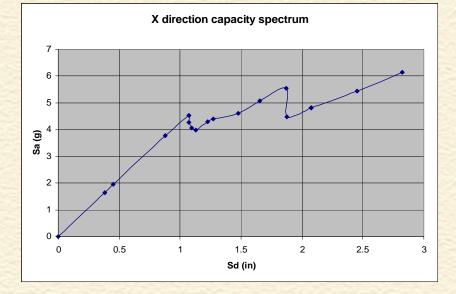
Hazard analysis: USGS/SCEC OpenSHA app "IM_EventSetCalc.jar" produces: • A database of intensity measure levels ... mean and variance • for an arbitrary list of intensity measure types,

... e.g., PGA, Sa(0.2 sec), Sa(1.0 sec)

- using any intensity measure relationships, ... e.g., BJF97, CB03, & Sadigh et al. 1997
- at any sites of interests


... e.g., ops center, data center, and backup.


Caltech fragility analysis


Equipment fragilities:

- Examine ~150 components for condition, config., redundancy
- 1,000 photos
- 1999 MCEER atlas for fragility parameters

Red-tag fragilities

0.00

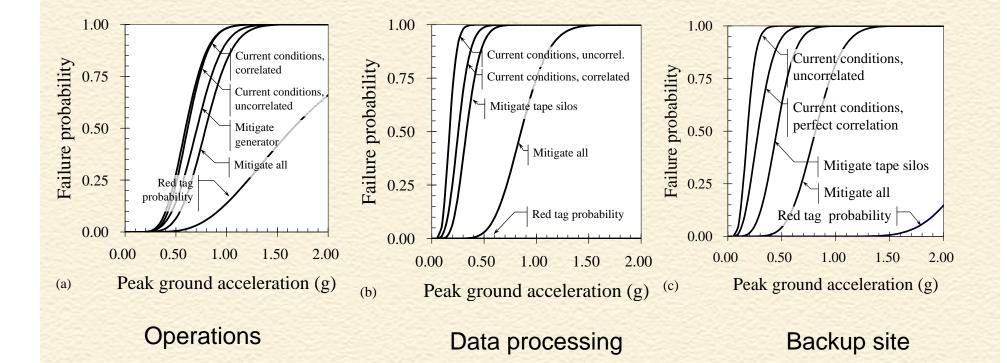
0%

5%

10%

Components failing life safety criteria

.


20%

15%

Step	Teff	Beff	Sd (in)	Sa (g)	< 10	IO to LS	LS to CF	P> CP	1.00 F	/
0	0.154	0.050	0.000	0.000	248	0	0	0	tag	
1	0.154	0.050	0.379	1.643	248	0	0	0	₽ 0.75 	
2	0.154	0.050	0.448	1.939	248	0	0	0	ofi	
3	0.154	0.051	0.879	3.781	246	2	0	0	≥ 0.50 +	
4	0.156	0.058	1.072	4.516	243	3	1	1	E E	
8	0.157	0.069	1.075	4.272	243	3	1	1	de 0.25 -	/
10	0.158	0.069	1.094	4.061	243	2	1	2	20.20	

Ops, data, and backup fragilities

Failure probability next 5 years

	As-is	Fix these weak links	Get
Operations	0.8%	Generator equipment	0.3%
Data facility	5.5%	Tape silos	0.2%
Backup facility	3.2%	Generator equipment, fans, EQSL, computers, raised access floors, tape silos	0.1%
Ops & backup	0.1%		~10 ⁻⁶
Data & backup	0.4%		~10 ⁻⁶

Conclusions

- Red-tagging wasn't the problem
- Equipment was
- Most equipment had been secured
- Unsecured equipment was critical, P(t) too high
- P(t) low enough after fixing equipment,
- Utility is fixing the weak links, not relocating

What's new here

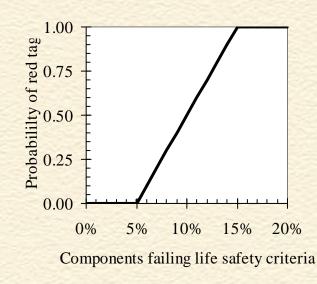
- Hazard analysis using IM_EventSetCalc.jar
 - Captures correlated shaking at distant sites
 - Arbitrary number of intensity measures, attenuations, sites
 - Inter- and intra-event variability in ground motion
- Fragility analysis using of fault trees
 - For data centers with MCEER empirical fragility dataset
 - Considering red tag, equipment failure, and off-site utility failure

Bottom line: fully probabilistic risk analysis

- Simultaneous operational failure of 2+ distant facilities
- Considering both red-tagging and equipment damage
- Broad empirical basis for equipment failure
- State-of-the-art fault tree analysis
- 1.2 million scenarios

Questions

keithp@caltech.edu (626) 233-9758



Supporting material

Relating FEMA 356 criteria to ATC-20 tag color

- FEMA 356: various life-safety criteria for structural components
- ATC-20: "Severe conditions endangering the overall building are grounds for an Unsafe posting. Localized Severe and overall Moderate conditions may allow a Restricted Use [yellow tag] posting."

